

Linville River, Gill State Forest, Restoration Investigation

Avery County, North Carolina, 15 September 2021 North Carolina Department of Environmental Quality Division of Water Resources Water Sciences Section Biological Assessment Branch

Prepared by:

Chris Verdone, Aquatic Biologist, Biological Assessment Branch

Jeff Deberardinis, Fisheries Biologist, Biological Assessment Branch

BENTHIC MACROINVERTEBRATE ASSESSMENT SUMMARY

On 15 September 2021, the North Carolina Biological Assessment Branch (NCBAB) sampled the Linville River at Gill State Forest to assess the efficacy of a restoration. Two stream reaches were sampled using the EPT method. The EPT method is an abbreviated version of the Full Scale method and is used to quickly determine between-site differences in water quality. It is particularly useful for watershed or basin assessment studies with large numbers of sites, or emergency sampling where it is desirable to rapidly assess the effect of spills, unusual discharges, etc. The collection and analysis time for the EPT method has been decreased from the Full Scale method in two ways. First, collections focus solely on a subset of the benthic community composed of taxa in the taxonomic orders Ephemeroptera, Plecoptera, and Trichoptera. These orders usually include the most intolerant species among benthic invertebrates. Field notes also are made concerning the abundance of other groups, especially any pollution indicator species. Secondly, the number of collections is decreased from 13 to six: one riffle-kick, one sweep, one leaf-pack, and three visuals.

The two stream reaches were located on either side of Harmon Bridge (SR 1536). The downstream site (CB416; 36.011180, -81.931490) was the restored reach and the upstream site (CB417; 36.015770, -81.930260) was the reference reach. Both reaches rated good. The restoration reach had 32 EPT, which put it solidly in the good category. The reference reach had 35 EPT, as such it was right on the edge of receiving an excellent bioclassification, which requires 36+ EPT. Overall, water quality in the restored reach was comparable to the upstream reference. Biotic index scores, which are a measure the relative tolerance of a system to stress were similar between the two locations as well (CB416 = 3.06; CB417 = 2.89), indicating both EPT communities are generally composed of intolerant taxa.

The primary difference between the two sites in terms of EPT taxa were that more Beatidae, Ephemerellidae and Neoephemeridae were found upstream compared to the restored reach. I believe this is primarily due to the lack of Podostemum, an aquatic plant that provides excellent refuge for invertebrates and seems to be especially important to Ephemerellidae and Neoephemeridae. Podostemum will probably establish itself in the restored area in time as it present in the reference reach. Another habitat type that was lacking in the restored reach was snag habitat (i.e. large woody debris). Snags and the roots from riparian vegetation catch leaves and provide important refuge for other species like Pteronarcys spp., which we did not recover from either reach. NCBAB is planning to add the restored reach to the list of basinwide monitoring sites that are sampled every five years (the Catawba Basin is scheduled for 2022), so we can continue to assess the effects of the restoration.

N	/aterbody			Loca	ation		Station ID	Date Bi		Bioclass	Bioclassification	
Linv	/ille Rive	er		BE Harmo	on Bridge		CB416	09/	15/21	Go	bod	
County	,	8 digit	нис	L	Latitude			Longitude			Elevation (ft)	
Avery		00305	101	36	.011180		-81.931490 3280			3280	-7	
	Level IV Fo	oregion		Draina	Drainago Aroa (mi2) Stra			Stream Width (m) St			ream Denth (m)	
Southern 0	Southern Crystalline Ridges and Mountains 30 12							0.7	. (,			
	Un ofre ore N				Dand within 4 w	aile)		NDDES	Number	Value		
	Opstreamr	NPDES DISCH	Crossnore	WWTP	bo and within 1 h	nne)		NC00	26654	< 11	MDG	
Landuse (%)	Fores	st Dev	eloped	Impervious	Cultivation	Grass/	Herb/Shrub	Wet	land	Water	Barren	
1992	90.4		4.9	N/A	3.8		N/A	0	.0	0.6	0.2	
2001	70.6		8.4	1.5	6.6		3.5	0	.2	5.0	0.2	
2006	70.6		8.5	1.5	6.5		3.5	0	.2	0.5	0.2	
2011	70.5	-	8.5	1.5	6.5		3.6	0	.2	0.5	0.2	
Water Quality Par	rameters			2021			Site Phote	ograph				
Temperature (°C)				17.7				4		1. 1. 1 March	1. 1. 1.	
Dissolved Oxygen	(mg/L)			8.7				Same A			1 Art	
Specific Conducta	nce (µS/cm)			55	ACCE				1.14			
pH (s.u.)				6.3		1		1				
Habitat Assessm	ent Scores	(max score)		2021		- And		CAN'S .				
Channel Modificati	ion (5)			4		- 4 S	The A					
Instream Habitat (2	20)			16			Conservation of the second	T All the second			1	
Bottom Substrate ((15)			15		- E - A	and the second second	The set		the second		
Pool Variety (10)				8	a state					Pre Marin	A A A	
Riffle Habitat (16)				14						-	ALC: NO	
Bank Erosion (7)				7	A TOP OF A	ante					12	
Bank Vegetation (7	7)			6	P 1824 TOM:	Contraction (
Light Penetration (10)			2			No.	e -				
Left Riparian Score	e (5)			3	And the second	And a st	J. W.	i in				
Right Riparian Sco	ore (5)			3	and the second	1949	The Come					
Total Habitat Score	e (100)			78		AL SHE AN		AGA SAN				
Substrate (%)	boulder (35)), cobble (30), <u>c</u>	ravel (20), sa	and (10), bedro	ck (10)		W	ater Clarit	y clea	r		

Substrate (%) boulder (35), cobble (30), gravel (20), sand (10), bedrock (10)	
---	--

Sample Date	Sample ID	Method	ST	EPT	BI	EPT BI	Bioclassification
09/15/21	12769	EPT	32	32	3.06	3.06	Good

Data Analysis

Linville River below Harmon Bridge received a Good Bioclassification in 2021. The reach had 32 EPT, which put it solidly in the Good category. For reference, an Excellent sample would have 36+ EPT. The EPT BI was 3.06, which indicates the taxa present are mostly intolerant. Overall, the restoration that occured in this reach appears to have been successful. However, there were several habitat types that were lacking in this reach including root mats, popdostemum and snag habitat /leaf packs. The lack of root mats were possibly a limiting factor for taxa like Oecetis spp., Pycnopsyche spp., Nectopsyche spp. and Triaenodes spp. In the current sample Pycnopsyche and Nectopsyche were absent, while Oecetis and Triaenodes were rare. Podostemum, which was absent in the reach, but present upstream, is an aquatic plant which grows on rocky substrates and provides important habitat for many aquatic species including Ephemerellidae. These include Ephemerella spp. and notably Neoephemera spp., which were both absent. Snag habitats (ie. large woody debris) which help to hold leaf packs were also absent in the reach. Snags and the leaves they catch provide important refuge for other species like Pteronarcys spp., which was conspicuously absent from the reach. Overall, water quality in the restored reach was comparable to the upstream reference reach. Future sampling of this location is recommened to further assess the efficacy of the restoration.

Waterbody				Loc	ation		Station ID	[Date	Bioclassification			
Linv	ille Rive	ər		AB Harm	on Bridge	CB417	09/15/21		Go	Good			
County		8 diai	HUC		atitude		Lonaitude	•		Elevation (ft)		
Avery		0030	5101	30	36.015770 -81)		3290	-7		
		oragion		Draina	Drainago Aroa (mi2) St			Stream Width (m)			Stream Depth (m)		
Southern (Crystalline Rid	does and Mou	Intains	Diama	30		14	(,	0.1	0.5	. (,		
		-9		-							-		
	Upstream N	NPDES Discl	nargers (≥ 1	MGD or < 1 M	GD and within 1 r	nile)		NPDES	Number	Volum	e (MGD)		
			Crossno					NC00	26654	< 11	MGD		
Landuse (%)	Forest	t De	veloped	Impervious	Cultivation	Grass/	Herb/Shrub	Wet	land	Water	Barren		
1992	90.4		4.9	N/A	3.8		N/A	0	.0	0.6	0.2		
2001	70.8		18.3	1.5	6.6		3.5	0	.2	0.5	0.2		
2006	70.7		18.4	1.5	6.5		3.4	0	.2	0.5	0.2		
2011	70.6		18.4	1.5	6.5		3.5	0	.2	0.5	0.2		
Water Quality Par	rameters			2021			Site Phote	ograph					
Temperature (°C)				18.3			and the second			1 les			
Dissolved Oxygen	(mg/L)			8.7		1.1	C. C. Spitzer of			and the second			
Specific Conducta	nce (µS/cm)			55	A States in			and a	and some	No.	A CONTRACTOR		
pH (s.u.)				6.0	L MASS		A second second	1.		1	and have the		
Habitat Assessm	ent Scores ((max score)		2021					11	and some			
Channel Modificati	on (5)	·		5		17							
Instream Habitat (2	20)			16	2 2 2 2	100	- and	- Ke	1. 18	46	and a star		
Bottom Substrate ((15)			15	S. C. F	1.47	C. Mar			a la sia	$\Delta = \gamma$		
Pool Variety (10)				10	A State	a state of				The Art of			
Riffle Habitat (16)				14	Brand Brand	2 martin							
Bank Erosion (7)				7		and the	The second	-		Cast Com	a search and		
Bank Vegetation (7	7)			7					Ling (
Light Penetration (10)			7		Same -	- Charles	à art			1. C.		
Left Riparian Score (5)				5			and the second		A BA				
Right Riparian Sco	ore (5)			3	y me						No. Patrice		
Total Habitat Score	e (100)			89	Caller 19 19	100		19.2.2	Ser.	The same state			
Substrate (%)	boulder (30)	. cobble (20).	aravel (10).	sand (20), bedro	ock (20)		W	ater Clarit	v clea	r			

• • • • •	A 1 15						
Sample Date	Sample ID	Method	SI	EPT	BI	ENIRI	Bioclassification
09/15/21	12770	EPT	35	35	2.89	2.89	Good

Data Analysis

Linville River above Harmon Bridge received a Good Bioclassification with 35 EPT in 2021. This reach served as the reference to assess the efficacy of a downstream restoration. This reach narrowly missed rating excellent, which would have required a total of 36 EPT taxa. The EPT BI was 2.89, which indicates the EPT community is generally intolerant. Compared to the restored reach, the reference reach had a higher gradient, more shade and many boulders covered with podostemum, which were absent downstream. The presence of podostemum likely contributed to the presence of Neoephemera, which was absent downstream. Notably we also found Hydropsyche carolina in this reach, which is very uncommonly collected. Similar to the downstream reach, root mats and leaf packs were rare, which were possibly limiting factors for taxa like Oecetis spp., Pycnopsyche spp., Neotopsyche spp. and Triaenodes spp. all which were absent. Recent high flows likely contributed to the restored reach, snags that catch leaf packs were uncommon. Future sampling of this location is recommend to further assess the efficacy of the downstream restoration.

Appendix 1. Taxa collected from benthic sites sampled at Linville River on 15 September 2021. Categorical abundances are also shown (R = 1 or 2 specimens collected; C = 3 to 9 specimens collected; A = 10 or more specimens collected).

			CB416 Linville R. BE Harmon Bridge Avery County	CB417 Linville R. AB Harmon Bridge Avery County
Order	Family	Taxon	15 Sep 2021	15 Sep 2021
Ephemeroptera	Baetidae	Acentrella barbarae		R
		Acentrella nadineae		R
		Acentrella turbida gr	Α	С
		Baetis flavistriga	С	С
		Baetis intercalaris	Α	Α
		Baetis pluto	Α	Α
		Baetis tricaudatus	R	
		Heterocloeon curiosum	R	С
		Plauditus dubius gr	Α	С
	Caenidae	Caenis spp	С	С
	Ephemerellidae	Drunella conestee	R	
		Serratella serratoides		С
		Teloganopsis deficiens	R	С
	Heptageniidae	Epeorus vitreus	Α	С
		Heptagenia marginalis gr		R
		Leucrocuta spp	Α	С
		Maccaffertium ithaca	С	
		Maccaffertium modestum	Α	
		Maccaffertium spp		Α
		Stenacron pallidum	С	С
	Isonychiidae	Isonychia spp	Α	Α
	Neoephemeridae	Neoephemera purpurea		R
Plecoptera	Leuctridae	Leuctra spp		R
	Peltoperlidae	Tallaperla spp	R	R
	Perlidae	Acroneuria abnormis	Α	Α
		Paragnetina immarginata	С	Α
Trichoptera	Glossosomatidae	Glossosoma nigrior	R	
	Hydropsychidae	Cheumatopsyche spp	Α	Α
		Diplectrona modesta	R	R
		Hydropsyche (C.) bronta	Α	Α
		Hydropsyche (C.) morosa	R	
		Hydropsyche (C.) sparna	Α	Α
		Hydropsyche (H.) carolina		R
	Leptoceridae	Ceraclea ancylus		С
		Oecetis spp	R	
		Triaenodes taenius	R	
	Limnephilidae	Hydatophylax argus	С	R
		Pycnopsyche spp	-	
	Philopotamidae	Chimarra spp	R	Α
		Dolophilodes spp	Α	Α

Appendix 1 continued

Order	Family	Taxon	CB416 Linville R. BE Harmon Bridge Avery County 15 Sep 2021	CB417 Linville R. AB Harmon Bridge Avery County 15 Sep 2021
Trichoptera	Phryganeidae	Ptilostomis spp		R
	Polycentropodidae	Nyctiophylax spp		С
		Polycentropodidae		R
		Polycentropus sensu lato spp	С	
	Rhyacophilidae	Rhyacophila fuscula	С	А
		Total taxa	32	35

Report continues on next page...

FISH COMMUNITY ASSESSMENT SUMMARY

On 15 September 2021, the NCBAB sampled the Linville River at Gill State Forest to assess the efficacy of a habitat restoration project. In addition to sampling for benthic macroinvertebrates in the restored and control reaches using the EPT method described above, two 300 feet stream lengths were measured within the same designated reaches and sampled for fish using the NCIBI assessment method. Two backpack electrofishing units and two fish netters (total of 4 people) collected all available fish within each sample reach using a two-passdepletion technique. Using this standard method, each two-person team shocked either the left or right edge of the wetted channel moving upstream, then returned downstream through the channel thalweg as a group. An attempt was made to collect all stunned adult fish for identification and enumeration, followed by their release back into the river.

The two stream reaches were located on either side of Harmon Bridge (SR 1536). The downstream site (CF113; 36.011180, -81.931490) was the restored reach and the upstream site (CF114; 36.015770, -81.930260) was the reference reach. Both reaches rated Good-Fair with the NCIBI (summary of 12 scored metrics designed to evaluate the structure and condition of a fish community). The upstream reference site produced a total of 308 individuals representing 11 fish species. The downstream restoration reach produced a total of 448 fish representing 13 species. Between both sample reaches, a total of 15 fish species were collected (see Appendix 2). Both fish sampling reaches received NCIBI scores of 42, at the lower end of a Good-Fair bioclassification, due to skewed trophic structures favoring herbivores and omnivores. Both NCIBI scores (and potential bioclassifications) would have likely improved with the collection of additional insectivorous fish, including the Carolina Fantail Darter (*Etheostoma brevispinum*). Overall, water quality in the restored reach was comparable to the upstream reference reach, like the benthos assessment results. Except for two metrics (number of sucker species and percent species with multiple ages) individual metric scores (8) were identical between the two fish collection reaches. Total NCIBI scores were also identical between the control and restored sites (42 out of 60 max points), indicating comparable fish structures and overall health.

The main difference between the two fish community samples was the number of Central Stoneroller (*Campostoma anomalum*) collected in each reach (88 individuals in the control reach vs. 234 in the restored reach, a 2.7-fold difference). This variation in abundance over a relatively short distance of river is likely related to the difference in canopy shading between the two sample reaches (light penetration = 7 in the control reach vs. 2 in the restored reach). As the banks of the restored reach heal and create additional tree shading over time, distributions of this benthos grazing species may also equilibrate between sample reaches. In addition, the lack of woody substrates in the restored reach is also likely contributing to the slight differences in fish assemblages seen in this initial assessment. Over time, woody substrates should also become established within the restored reach, offering additional biological refugia to aquatic species of all kinds.

Wa	aterbody			Lo	cation			Stati	on ID		Date	Bioclass	ification
LINVIL	LE RIV	ER		BE Harr	non B	ridge		CF	113	09/	15/21	Good	d-Fair
County		8 digit HU	c	Latitud	le		ongitude	•	E	levation	(ft)	Referen	ce Site
AVERY		0305010	1	36.0111	36.011180 -81.931490 3283						No		
L	.evel IV Ec	oregion		Drain	Drainage Area (mi2) Stream Width (m) Stream D							am Depti	ו (m)
Southern C	rystaline Ric	Iges and Mo	untains		30.4	<u> </u>		1	2	<u> </u>		0.8	()
lins	tream NPC)ES Dischar	aers (>	1 MGD or < 1	MGD and	1 withir	1 mile)			NPDES	Number	Volum	MGD)
			Crossn	ore WWTP	in ob and		i i iiiic)			NC00	26654	< 1	MGD
	Farrad	b Davi	alamad	Increased	a 0141	vetien	Grees	l la ula /O		10/04	land	10/oto #	Dannan
Landuse (%)	Pores	t Dev				vation	Grass/	nerb/5	aurup	vvet		water	Darren
2001	70.6		18.4	1.5	6	6		3.5		0	2	0.5	0.2
2006	70.6		18.5	1.5	6	.5		3.5		0	.2	0.5	0.2
2011	70.5		18.5	1.5	6	.5		3.6		0	.2	0.5	0.2
Water Quality P	arameters			2021				Site I	Photo	araph			
Temperature (°C)	arameters			17.8	ALX:	N. H. T.		120 M		9		Sec.	
Dissolved Oxyge	n (mg/L)			8.7	1.1.1	19 E	. WAS	C As					
Specific Conduct	ance (µS/cr	n)		55	1 Sim						and a		
pH(s.u.)				6.3	No.V.	a la S	- A				h a th		
Habitat Assess	ment Scor	es (max so	ore)	2021					N. O.	and the second			- And
Channel Modificat	tion (5)			4		-						-	-
Instream Habitat (20)			16	A						E		A
Bottom Substrate	(15)			15	37-2			and the second		2 th			
Pool Variety (10)				8									- Allen-
Riffle Habitat (16)				14							-		
Bank Erosion (7)	((
Bank Vegetation	(7)			0						MC 3	and a	1 Carlo	
Light Penetration	(10) re (5)			2						14 Alexandre	1 K		A COLOR
Right Riparian Sci	ore (5)			3						S. Con			-A
Total Habitat Scor	re (100)			78								7	
Water Clarity	Clear		Su	bstrates	boulde	r (35%)	, cobble (3	80%), g	ravel	(20%), sa	and (10),	bedrock (1	0)
Sample I	Date	San	nple ID		Species	Total		NCIB	S Sco	re	1	ICIBI Ratir	ng
09/15/2	21	20	21-19		11				42			Good-Fair	r
Data Analysis													
The fish communi	he fish community survey within the restored reach of the Linville River below the AB Harmon bridge produced a Good-Fair bioclassification												
using the NCIBI. A	relatively a	bundant fish	assemb	lage (n=448) v	v ith mode	rate spe	ecies richr	ess for	awa	atershed	of this siz	e including	2
intolerant top pred	dators [Rock	<bass (amb<="" td=""><td>Ioplites I</td><td>rupetris), and</td><td>Smallmou</td><td>th Bass</td><td>(Micropte</td><td>rus dol</td><td>omieu</td><th>()]. The N</th><td>ICIBI scor</td><td>e of 42 is c</td><td>on the low</td></bass>	Ioplites I	rupetris), and	Smallmou	th Bass	(Micropte	rus dol	omieu	()]. The N	ICIBI scor	e of 42 is c	on the low

intolerant top predators [Rock Bass (*Ambloplites rupetris*), and Smallmouth Bass (*Micropterus dolomieu*)]. The NCIBI score of 42 is on the low end of the Good-Fair fish rating, mostly due to the trophic imbalance of collected taxa favoring herbivores and omnivores. The relatively open canopy here is likely influencing the overall dominance of the herbivorous Central Stoneroller (*Campostoma anomalum*). How ever, the metric %Piscivores recieved a maximum score. Expected but unencountered insectivores include Rosyside Dace (*Clinostomus funduloides*), Creek Chub (*Semotilus atromaculatus*), Western Blacknose Dace (*Rhinichthys obtusus*), Longnose Dace (*Rhinichthys cataractae*), Rainbow Trout (*Oncorhynchus mykiss*), Striped Jumprock (*Moxostoma rupiscartes*), and most notably Carolina Fantail Darter (*Etheostoma brevispinum*). Surprisingly, no darters were collected in this restored reach. A more balanced assemblage may return over time as the restored banks become more vegetated and allow additional shading to the stream bed. Natural variation of the fish community within the Linville River may also be influencing the observed trophic structure at this location. A follow up assessment may be justified to verify these results.

Most Abundant Sp.	Central Stoneroller (n=234, 52%), River Chub	Non-Nativ
	(n=118, 26%)	

Sp. Rock Bass (n=10), Green Sunfish (n=6), Smallmouth Bass (n=4), Brow n Trout (n=10)

Species Change Since Last Cycle

Does not apply, this was the first fish community assessment at this location.

Wa	aterbody				Loc	ation			Static	on ID)ate	Bioclas	sification
		R		Δ	BHarm	on Br	ridae		CE	114	09/	15/21	Goo	d-Fair
					Brianni		lage				00/	10/21		aran
County	8	3 digit HU	c		Latitude		L	ongitud	е	E	levation	(ft)	Referen	ICE Site
AVERY		3050101			36.015770)	-	81.93026	0		3296		N	0
L	evel IV Ecore	egion			Drainag	e Area	(mi2)	SI	tream V	Vidth	(m)	Str	eam Dept	h (m)
Southern Cr	rystaline Ridge	s and Mou	untains			30.2	<u>, ,</u>		1	4	. ,		0.5	
													1	(11.05)
Ups	tream NPDES	Dischar	gers (≥ 1			GD and	within	1 1 mile)			NPDES N	Number	Volum	
			Clossing	ore	VVVIP						INCUU2	20004		IVIGD
Landuse (%)	Forest	Dev	eloped	In	npervious	Cultiv	/ation	Grass	rass/Herb/Shrub We			land	Water	Barren
1992	90.4		4.9		0.0	3.	.8		0.0		0.	.0	0.6	0.2
2001	70.8	1	18.3		1.5	6.	.6		3.5		0.	.2	0.5	0.2
2006	70.7	1	18.4		1.5	6.	.5		3.4		0.	.2	0.5	0.2
2011	70.6	1	18.4		1.5	6.	.5		3.5		0.	.2	0.5	0.2
Water Quality Pa	arameters				2021				Site P	hoto	graph			
Temperature (°C)				T	18.3		1.58	1915 C		200			Sel and	
Dissolved Oxyger	n (mg/L)				8.7		376	Inter 22	A.	14	Contraction of the second	156		
Specific Conducta	ance (µS/cm)			T	55	68 12	1.100	236		1000			Ser 2	1.01
pH (s.u.)					6.0	S HIS			and a					
						HE					and the second		1 Starter	
Habitat Assess	ment Scores	(max sc	ore)	+	5		SOF .				A PA	E in pri		
Channel Woollicat	lion (5)			-	16		and the		A.S.					
Instream napital (20)			+	15	1000		Re	Part of	and the second	a sea da se			
Pool Variety (10)	(15)			+	10	Can the		140	Same of	a.		And the		
Riffle Habitat (16)				+	14	Start B	and the second			and the second s	Carrow M	-		
Bank Frosion (7)				+	7					50%				12
Bank Vegetation ((7)			+	7		-							
Light Penetration	(10)				7									
Left Riparian Scor	re (5)				5			121						
Right Riparian Sco	ore (5)			T	3			1-1-			Part-			
Total Habitat Scor	e (100)				89			-						
Motor Clarity				hat	roto o			· · · h h h · /	000()		(100())		() <u>b</u> a da a a b	(000)()
water Clarity	Clear		Sui	bsti	rates	boulder	r (30%)	, CODDIE (.	20%), gr	avei	(10%), sa	ind (20%	a), Dedrock	.(20%)
Sample D	Date	San	nple ID		Sp	oecies 7	Total		NCIB	Sco	re		NCIBI Rati	ng
09/15/2	1	20	21-20			13				42			Good-Fai	ir
Data Analysis														
The fish communi	ity survey with	nin the unr	estored r	eac	h of the Linv	ille Rive	r above	the AB F	larmon b	ridge	(control s	site) rece	eived a Goo	od-Fair
bioclassification u	using the North	Carolina I	ndex of E	Biotio	c Integrity (N	ICIBI). G	ood abu	undance (n=308) a	and m	oderate s	pecies r	richness (2	more
taxa collected tha	in below the br	ridge in the	e restore	d re	ach) for a w	atershe	d of this	s size, inc	luding 1	pollut	tion intole	rant spe	cies (Rock	Bass,
Ambloplites rupes	stris). The NCIB	31 score of	42 puts	this	survey on th	ne low e	end of th	ne Good-F	air biocl	assifi	ication, pr	imarily d	ue to the sl	kew ed
Additional canony	/ shading here		d to the re	esto	red reach be	elow the	anomai hridae	(see abo	ve Liaht	es (ru Pene	tration in	, Nocorr Habitat /	lis micropo Assessmer	yon). ht Scores)
is likely the reason	n for the mode	rate incre	ase in ins	secti	ivores prese	ent (32%	vs. 16	% in the r	estored	reach	n). How ev	er. mato	hina metric	scores
for all 3 trophic m	etrics were as	signed (1	out of 5	for ^o	%Omni+Herb	and %I	Insectiv	ores, and	5 out of	5 for	%Piscivo	ores) for	both Linvil	le River
sites, highlighting	the overall trop	phic simila	rities betv	w ee	n these pro	ximal sa	mple rea	aches. Si	milar to th	he res	stored site	e, expec	ted but	
unencountered in	sectivores incl	lude Rosy	side Dace	e (C	linostomus	funduloi	ides), C	Creek Chu	ıb (<i>Semo</i>	otilus	atromacu	latus), \	Western Bla	acknose
Dace (Rhinichthy	/s obtusus), Ra	ainbow Tr	out (Onc	orh	ynchus myki	iss), Str	riped Ju	mprock (A	Moxostoi	ma ru	piscartes	;), and n	nost notably	y Carolina

Fantail Darter (*Etheostoma brevispinum*). No darters were collected in this control reach. As may be the case in the restored reach, natural variation of the fish community may also be influencing the trophic structure here. A follow up assessment may be justified to verify these results.

Most Abundant Sp.River Chub (n=94, 31%), Central Stoneroller (n=88, 29%)

Non-Native Sp. Rock Bass (n=12), Green Sunfish (n=4), Brow n Trout (n=14)

Species Change Since Last Sample

Does not apply, this was the first fish community assessment at this location.

Appendix 2. Taxa collected from fish community sites sampled at Linville River on 15 September 2021.

					Linville River BE Harmon Bridge (restored)	Linville River AB Harmon Bridge (control)
				Trophic Guild of	Avery County	Avery County
Fam ily	Genus Species	Common Name	Tolerance Rating	Adults	15 Sep 2021	15 Sep 2021
Catostomidae	Catostomus commersonii	White Sucker	Tolerant	Omnivore		2
	Hypentelium nigricans	Northern Hog Sucker	Intermediate	Insectivore	10	44
Centrarchidae	Ambloplites rupestris	Rock Bass	Intolerant	Piscivore	10	12
	Lepomisauritus	Redbreast Sunfish	Tolerant	Insectivore	2	8
	Lepomis cyanellus	Green Sunfish	Tolerant	Insectivore	6	4
	Lepomis macrochirus	Bluegill	Intermediate	Insectivore		2
	Micropterus dolomieu	Smallmouth Bass	Intolerant	Piscivore	4	
Cyprinidae	Campostoma anomalum	Central Stoneroller	Intermediate	Herbivore	234	88
	Cyprinella galactura	Whitetail Shiner	Intermediate	Insectivore		22
	Luxilus coccogenis	Warpaint Shiner	Intermediate	Insectivore	24	14
	Nocomis micropogon	River Chub	Intermediate	Omnivore	118	94
	Notropis rubricroceus	Saffron Shiner	Intermediate	Insectivore	18	2
	Notropis spectrunculus	Mirror Shiner	Intermediate	Insectivore		2
	Rhinichthys cataractae	Longnose Dace	Intermediate	Insectivore	12	
Salmonidae	Salmo trutta	Brow n Trout	Intermediate	Piscivore	10	14
Total Species					11	13
Total Sample C	Count x 2 (300 ft sample rea	448	308			

