Regeneration of Bottomland and Swamp Forests: A Bibliography

Compiled by A.J. Lang PhD
North Carolina Forest Service
July 2018

Abstract -- Bottomland and swamp forest types occupy about 24.3 million acres within the coastal southeastern United States. These forest systems are among the most ecologically diverse and provide people with many goods and services, despite the dynamic environment created by weather and people. Applied research studies have helped to develop mindful management of these systems. This silvicultural knowledge helps maintain many ecological values on the ground. Although there are varying objectives associated with forest management, one common theme is to regenerate a forest stand. Stand regeneration is a critical component of management and is often used as a metric of success by foresters. Therefore, the sustainability of these systems is contingent on the ability to regenerate forests back to forests. Broad ecological challenges such as site hydrology and soils and herbivory and vegetative competition associated with regeneration of bottomlands can occur. The purpose of this bibliography is to provide a detailed listing of digitally available references related to the challenges and successes of regenerating bottomland hardwood and forests of the Southeastern United States. Many of the citations were transposed from “Forested Wetlands of the Southern United States: A Bibliography” by Conner and others, 2001. Additional references published online after 2001 were added to those obtained from the 2001 bibliography by Conner and others. We encourage readers to use this list as a starting point and recognize that some references have been omitted. However, each of these references has an online digital copy available. Note that access to some references will require journal membership and/or a fee.

Publications produced by or in cooperation with the USDA-Forest Service may be available at no cost from that agency’s online repository at www.fs.usda.gov/treesearch.

Allen, J.A. 1992. Cypress-tupelo swamp restoration in southern Louisiana. Restoration and
Management Notes. 10(2): 188–189.

Notes. 13(1): 123.

Allen, J.A.; Burkett, V. 1997. Bottomland hardwood forest restoration: overview of techniques,
successes and failures. In: Kusler, J.A.; Willard, D.E.; Hull, H.C., Jr., eds. Wetlands and
watershed management: science applications and public policy. Berne, NY: Association of State
Wetland Managers, Inc.: 328–332.

Allen, J.A.; Chambers, J.L.; Pezeshki, S.R. 1997. Effects of salinity on baldcypress seedlings:

Information and Technology Report USGS/BRD/ITR–2000-0011. USDA-Forest Service,

Wetlands Research Center. 28 p.

baldcypress (Taxodium distichum). Tree Physiology. 16: 307–313.

Allen, J.A; Boykin, R. 1991. Tree shelters help protect seedlings from nutria (Louisiana). Restoration
and Management Notes. 9(2): 122–123.

Allen, P.H. 1962. Black willow dominates baldcypress-tupelo swamp eight years after clear cutting.
Forest Experiment Station. 2 p.

bottomland hardwood forest: economic and policy considerations. Res. Bull. 185. Blacksburg,
VA: Virginia Water Resources Research Center, Virginia Tech University. 85 p.

Amacher, G.S.; Sullivan, J.; Shabman, L. [and others]. 1998. Reforestation of flooded farmlands:

Barkley, H.G. 1954. Some observations on fluctuating water levels and seasonal changes in an Arkansas cypress swamp.

Batista, W.B. 1996. Role of hurricane disturbance in the dynamics of the southern mixed hardwood forest: a case study in

Regeneration of Bottomland and Swamp Forests: A Bibliography.

Regeneration of Bottomland and Swamp Forests: A Bibliography.
N.C. Forest Service. July 2018

Murphy, J.B.; Stanley, R.G. 1975. Increased germination rates of baldcypress and pondcypress seed following treatments affecting the seed coat. Physiologia Plantarum. 35(2): 135–139.

Proceedings of the Oklahoma Academy of Science. 35: 1–2.

